How I Teach Factoring Quadratics


Using this method to teach factoring quadratics has helped my algebra students so much!  There are no tricks! This works with any lesson and is easy for teachers too.

I know of a few different methods people use to teach factoring, but I’ve never been a fan of the “fancy” methods.  They just don’t work for me.  When I teach factoring, I actually teach the unit backward.  I teach factoring by grouping, factoring trinomials when a≠1, factoring trinomials when a=1, then special cases.

I start with factoring by grouping, because once students can do that, factoring trinomials is easy.  I tend to spend an extra day teaching factoring by grouping.  When students have that down, I move on to factoring trinomials.  I prefer teaching when a≠1 first, because when a=1 is really just a special case.  If students can handle the “harder” version, there almost isn’t a need to teach the “easier” version.

So, this is how I teach factoring.  This is not revolutionary.  It is not new, or even interesting.  But it works, every time.  I've often heard this method called "splitting the middle".

First, I have students multiply the “a” value by the “c” value.

How I Teach Factoring Quadratics
Then, I tell them they are looking for two numbers that multiply to that value.  I have them make a list.

How I Teach Factoring Quadratics

Only after that do I have them find the pair of numbers that adds to the “b” value.

How I Teach Factoring Quadratics

Next, I have students split the middle and finish by factoring by grouping.  So, example student work for the example would look like this:

How I Teach Factoring Quadratics

I prefer to teach factoring this way because it doesn’t rely on tricks and it works every time.  Also, after this lesson, teaching a=1 is just a special case.


14 comments

  1. I use the same method when teaching factoring, although I LOVE that you teach the a=1 case after because I always have a student or two who get confused between the two strategies. I think that would help a lot. Thanks!

    ReplyDelete
  2. I do this in a similar manner, but when I have them do the factor by grouping I have them put it into an area model. The graphic organizer helps them to see where the common factors are. It works for solving quadratics where a is not 1 as well as cubic expressions that can be factored by grouping. It's also a method I teach to multiply polynomials for those who need their work to be more organized than just distributing.

    ReplyDelete
  3. Great strategy. I enjoy the hands on method of teaching quadratics using Mortenson math blocks. I had some of my own personal "ah, ha" moments playing around with quadratics.

    ReplyDelete
  4. I teach special education students and use this same method, in the same order. Your'e right. It works every time. I find I rarely have to teach a=1 because they don't see it as any different. When you multiply a*c, it doesn't matter if a=7 or a=1.

    ReplyDelete
  5. I've been doing this for a few years - it also makes it easier when you have to go into factoring four or more terms because they already know how to factor by grouping

    ReplyDelete
  6. Over (too many) years of teaching, I have seen and used numerous techniques to factor quadratics (from guess-and-check to box-method) .... this is my favorite and the most easily understood.

    ReplyDelete
  7. Thats exactly how I teach factoring too. I ask the students to make a list of all factors that multiply to ac using rainbow method and then add them to see which one gets to b!!! Always good to know that there are other good teachers who have same thoughts/ methods as you. I love your resources and your facebook page. Keep them coming

    ReplyDelete
  8. I'm a bit confused though. How you would you go about it if it was 4b^2-25?

    ReplyDelete
    Replies
    1. Add a zero placeholder; it still works (for simplicity/clarity I used "x" instead of "b").
      4x^2 + 0x -25
      Multiply "a" term times "c" term:
      4 * -25 = -100
      Factors that multiply to -100, and add up to 0: 10 and -10
      So the above becomes:
      4x^2 + 10x -10x -25
      Group factor the first two terms:
      4x^2 + 10x = 2x(2x + 5)
      Group factor the second two terms:
      -10x - 25 = -5(2x + 5)
      Put them together, and you have:
      (2x - 5)(2x + 5)

      Delete
  9. I use the phrase...we are looking for TWO KEY NUMBERS that multiply to "ac" and add to b.
    BUT my question is, when a=1, do you still have the students break bx into 2 separate terms and using grouping method or do you teach them a shortcut and go right to the factors (x___)(x___) ? In the past, I have not shown my students this little shortcut until a few of them discover it on their own.

    ReplyDelete
    Replies
    1. I don't teach the shortcut. Many of them figure it out for themselves, and that's fine. However, the students that don't figure it out on their own are typically the students that need a little more practice anyway.

      Delete
  10. So glad to find someone else who skips a=1 at first. It helps students immensely!

    ReplyDelete
  11. I'm curious as to *why* we teach factoring quadratics of the form ax^2 + bx + c
    The proof grouping works is *NOT ACCESSIBLE* to high school students: http://www.onemathematicalcat.org/algebra_book/online_problems/facByGrpPf.htm

    Presumably then, we need factoring by grouping for *what it does*, not *why it works*. Factored representation reveals x-intercepts (and thus, vertex). However, completing the square directly reveals vertex and is how we can derive the quadratic "formula" - which is accessible to grade 11 students
    https://mindyourdecisions.com/blog/2015/10/02/the-quadratic-formula-an-intuitive-explanation/

    Can someone comment on why we labor to teach this algorithm? I'm at a loss to know why.

    ReplyDelete

I love hearing from my readers. Thank you for taking the time to leave a comment!